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STOCHASTIC PARAMETER ESTIMATION OF
NON-LINEAR SYSTEMS USING ONLY HIGHER

ORDER SPECTRA OF THE MEASURED RESPONSE
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Methods for using fourth order spectral quantities to estimate the unknown parameters
in non-linear, randomly excited dynamic systems are developed. Attention is focused on
the case where only the response is measurable and the excitation is unmeasurable and
known only in terms of a stochastic process model. The approach is illustrated through
application to a non-linear oscillator with both non-linear damping and stiffness and with
excitation modelled as a stationary Gaussian white noise process. The methods have
applications in studies of the response of structures to random environmental loads, such
as wind and ocean wave forces.
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1. INTRODUCTION

Many mechanical and structural systems respond dynamically to random environmental
loads, such as wind or wave forces. Examples include ships rolling in an irregular seaway,
flexible buildings vibrating due to turbulent wind loading and jack-up offshore structures
moving as a result of combined wave and wind loading. For the purposes of assessing the
reliability of such structures it is important to predict their dynamic response, at the design
stage. However, such predictions are invariably difficult. Whilst mass and stiffness
parameters in the governing equations of motion can usually be computed with some
accuracy, damping parameters are normally not quantifiable by theoretical means. For
example, in the case of a ship rolling in waves the appropriate parametric form of damping
is well established [1–5]. However, the damping arises from a very complex fluid–structure
interaction between the waves and the ship motion, involving three-dimensional vortex
shedding. Thus, a theoretical determination of the damping parameters by the use of
computational fluid dynamics techniques is impractical.

As an alternative approach the damping parameters can be estimated by experimental
means using model tests (e.g., see reference [4]). In such experimental work standard
system identification techniques [3, 4, 6–8] can be applied, provided that simultaneous
measurements of the system’s excitation and response are available, to yield the required
parameter estimates. A wide variety of appropriate system identification procedures are
available for this purpose: these may be separated into time domain and frequency domain
techniques [6]. In the time domain the identification methods are usually based upon least
squares, maximum likelihood and related techniques. In the frequency domain one is
usually concerned with spectral estimates and fitting models to estimated frequency
response characteristics.

A difficulty in dealing with environmental loading, however, even at model scale, is that
the actual forces experienced by the structure are unknown. Thus, referring to the ship
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rolling example again, if experiments are performed in a wave tank, using irregular waves
to simulate real sea waves, then the wave motion can be measured but the actual wave
moment experienced by the ship model, when it is moving, is unmeasurable. In this
situation most of the techniques available in the system identification literature are
inapplicable. Methods are required in which the estimation is based on response
measurements only, together with a stochastic model of the excitation. Thus, one is faced
with a continuous time stochastic estimation problem.

This stochastic estimation problem also arises when investigating the behaviour of
structures once they have been built. Such investigations are often very desirable as a form
of condition monitoring. Here again the forces on the structure are unmeasurable and one
must work with the measured response alone, combined with some stochastic model
of the excitation. For example, in the case of an offshore structure responding to wave
loading, an on-line estimation of the parameters in the governing equations of motion,
from measured responses, enables the parameters assumed in the design process to be
corrected, leading to an improved assessment of the risk of failure. Such information
can also be very useful in the implementation of active control systems and in providing
information which can be used in the design of future structures.

For linear systems the stochastic estimation problem can be addressed through the
application of normal spectral analysis methods. However, if significant non-linearities are
present, then such spectral methods are inapplicable. There are a number of suitable time
domain methods available, in the literature, for solving such non-linear problems [6].
However, rigorous testing of these techniques, through application to a particular type of
non-linear oscillator excited by white noise, has shown that they usually give poor results
in the case where the excitation is unknown [9]. Thus, new approaches are required, based
on applications of results in stochastic process theory (e.g., see references [10, 11]).

It has been shown recently [12] that, for oscillators with both non-linear damping and
stiffness, responding to wide-band random excitation, reasonably good parameter
estimates can be obtained by combining a moment method with a second order spectral
method [13]. The moment equation method offers a very good estimation of the stiffness
parameters, and enables linear and non-linear contributions to be separated but is
incapable of yielding estimates of the absolute level of the equivalent linear damping.
On the other hand, good estimates of this level, and the intensity of the excitation, can
be obtained by using the second order spectral method. Unfortunately, however, the
spectral method does not provide a means of separating out the linear and non-linear
contributions to the damping.

In order to estimate the absolute levels of both linear and non-linear damping
coefficients, and not just the equivalent linear damping level, with accuracy, it is necessary
to consider higher order statistical quantities relating to the memory of the response
process. Higher order spectral quantities, or polyspectra, such as the bispectrum and the
trispectrum [14] are appropriate for this purpose. They were originally introduced for the
purpose of studying deviations from Gaussianity, in stationary random process, due to
non-linearities. The concept of a spectral representation of higher-order moments of a
stationary process was first proposed by Blanc-Lapierre and Fortet [15], and was further
developed by Shiryaev [16] and Brillinger [17, 18]. Shiryaev [16] also considered a spectral
representation for higher-order cumulants, attributed to Kolmogorov.

In this paper a general approach to the estimation of parameters in non-linear stochastic
systems is presented and developed in some detail for the case where second and fourth
order spectral quantities are employed. As an illustration, the problem of estimating the
parameters in a non-linear oscillator, with linear plus quadratic damping and linear plus



   203

cubic stiffness and with Gaussian wide-band random excitation is considered. The method
is validated by applying it to some digitally simulated data.

2. THE ESTIMATION PROBLEM

A general form of the equations of motion of an n-degree-of-freedom system is

gi (t; l)0 gi [z(t); l]= fi (t; u) i=1, 2, . . . , n, (1)

where

z(t)= [q(t), q̇(t), q̈(t)]T, (2)

q is an n-vector of displacement response random process, fi (t; u) are random processes,
gi (t; l) are non-linear functions and l and u are vectors of parameters.

Here both the response, q(t), and the excitation, fi (t; u), will be considered to be
stationary, random processes. It will be supposed that sample functions of the
displacement response processes can be measured over an interval of time 0E tETo .
Where necessary sample functions of z(t) can be generated by numerically differentiating
q(t). The excitation processes fi (t; u) will be supposed unmeasurable, and a stochastic
model will be specified.

The elements of the parameter vectors l and u are treated here as unknowns, to be
estimated from the response data. The estimation problem can be stated as follows: how
can sample functions of the response be processed to yield estimates of l and u?

Here this problem will be solved through techniques based on the use of spectral
relationships.

2.1.    

Since sample functions of the excitation processes fi (t; u) can not be measured it is
necessary to specify them in terms of a stochastic model. Specifically, here it will be
supposed that fi (t; u) are zero-mean stationary processes, i.e.,

E{ fi (t; u)}=0 i=1, 2, . . . , n, (3)

where E{ · } is the expectation operator, and that these processes are symmetric with
respect to their means. Moreover it will be assumed that the gi functions are odd with
respect to the response variables, such that the response processes are also symmetric about
their zero mean values.

Under these conditions only the even order statistics of the excitation and response
processes are non-zero. Here it will be supposed that the second order and fourth order
correlation (or cumulant) functions of fi (t; u) are known. The second order correlation
functions (here equal to the second order cumulant functions, since the means are zero)
are defined as

R(2)
i j (t; u)=E{ fi (t; u)fj (t+ t; u)}, (4)

and the fourth order correlation–cumulant functions may be defined by

K(4)
i jkl (t1, t2, t3 ; u)=R(4)

i jkl (t1, t2, t3 ; u)−R(2)
i j (t1 ; u)R(2)

kl (t3 − t2 ; u)

−R(2)
ik (t2 ; u)R(2)

jl (t3 − t1 ; u)−R(2)
il (t3 ; u)R(2)

jk (t2 − t1 ; u), (5)
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where

R(4)
i jkl (t1, t2, t3 ; u)=E{ fi (t; u)fj (t+ t1 ; u)fk (t+ t2 ; u)fl (t+ t3 ; u)} (6)

are the fourth order correlation functions.
The corresponding second order spectral cumulant functions (here identical to the

spectral functions) are given by

S(2)
i j (v; u)=

1
2p g

a

−a

R(2)
i j (t; u) e−ivt dt (7)

and the fourth order spectral cumulant functions are given by (e.g., see reference [14])

P(4)
i jkl (v1, v2, v3 ; u)=S(4)

i jkl (v1, v2, v3 ; u)−S(2)
i j (v1 ; u)S(2)

kl (v3 ; u)d(v1 +v2)

−S(2)
ik (v3 ; u)S(2)

jl (v2 ; u)d(v1 +v3)

−S(2)
il (v1 ; u)S(2)

jk (v2 ; u)d(v2 +v3), (8)

where

S(4)
i jkl (v1, v2, v3 ; u)=

1
8p3 g

a

−a g
a

−a g
a

−a

R(4)
i jkl (t1, t2, t3 ; u) e−i(v1 t1 +v2 t2 +v3 t3) dt1 dt2 dt3

(9)

is the fourth order spectral function and d() is Dirac’s delta function. The relationship
between P(4)

i jkl (v1, v2, v3 ; u) and K(4)
i jkl (t1, t2, t3 ; u) is similar to that given by equation (9).

It is noted that, if the excitation is Gaussian, the fourth order cumulant functions are zero.
The assumption of zero means and symmetry is made here to simplify the subsequent

discussion. However, there is no difficulty in principal in extending the subsequent analysis
to situations where the excitation and response processes are asymmetric, with non-zero
means (see section 6).

3. GENERAL ESTIMATION METHOD

Suppose that the data is divided into N blocks (r=1, . . . , N), each of duration T
(T0 =NT), and that for each block the same transform is applied to both sides of
equation (1), to obtain a relationship of the form

Xi;r (r; l)=Yi;r (r; u), (10)

where r is the transformed variable, corresponding to t.
For each block, quantities can be formed by applying the same operations to both sides

of equation (10), as follows:

Vk
i j · · · ;r (r1, r2, . . . ; l)=Hk[Xi;r (r; l)], Wk

i j · · · ;r (r1, r2, . . . ; u)=Hk[Yi,r (r; u)], (11)

where Hk (k= a, b, . . . ) are some suitable operations. For example, Ha could be a simple
product, as follows:

Va
i j;r (r1, r2 ; l)=Xi,r (r1 ; l)Xj,r (r2 ; l), Wa

i j;r (r1, r2 ; u)=Yi,r (r1 ; u)Yj,r (r2 ; u). (12)



   205

Clearly Vk =Wk and, taking expectations

V�k
i j · · ·(r1, r2, . . . ; l)0E{Vk

i j · · · ;r (r1, r2, . . . ; l)}=W�k
i j · · ·(r1, r2, . . . ; u)

0E{Wk
i j · · · ;r (r1, r2, . . . ; u)}. (13)

Since only stationary excitation and response processes are considered her, V�k and W�k are
the same for all blocks: i.e., independent of r, as indicated.

The expectation V�k
i j · · · can be estimated by averaging over the N blocks; thus,

V k
i j · · · =

1
N

s
N

r=1

Vk
i j · · · ;r . (14)

The unknown parameters can now be estimated by minimizing, in a least squares sense,
the differences between the V k and W�k. Thus, the cost function

J= s
k

s
i, j, . . .

s
r,s, . . .

[V k
i j · · · (rr , rs , . . . ; l)−W�k

i j · · ·(rr , rs , . . . ; u)]2 (15)

is minimized with respect to l and u. As indicated the cost function is evaluated by
summing over a suitable range of r values.

To implement this method it is, of course, necessary to be able to evaluate W�, in terms
of the known statistical parameter describing the excitation process.

4. SECOND ORDER SPECTRAL IDENTIFICATION METHOD

The second order spectral identification method [13] provides estimates of the vector
parameters l, u by minimizing a cost function in which appears the second order spectral
density of both the input fi (t; u) and the output z(t). Here the method is generalized
through the use of a new and more direct formulation, based on the general framework
given in the preceding section.

For this purpose the Fourier transform is chosen to convert equation (1) to a
relationship of the form of equation (10). Thus, here r=v and, introducing a data
window, D(t), one has

Xi;r (v; l)=g
T

0

gi;r (t; l)D(t) e−ivt dt, Yi;r (v; u)=g
T

0

fi;r (t; u)D(t) e−ivt dt. (16)

To form the V and W quantities in equation (11) the X and Y quantities are here multiplied
by their complex conjugates and divided by 2pT. Thus,

Va
i j;r (v)=

1
2pT

Xi;r (v; l)X*j;r (v; l), Wa
i j;r (v)=

1
2pT

Yi;r (v; u)Y*j;r (v; u). (17)

On taking expectations of W one finds that

W�a
i j (v; u)=

1
2pT g

T

0 g
T

0

R(2)
i j (t− s; u)D(s)D(t) eiv(t− s) ds dt. (18)

It is noted that this expectation can be calculated by numerical integration, since R(2)
i j is

assumed to be known.
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If the block length is significantly greater than the correlation time scale of the excitation
then a standard analysis shows that (using equation (7))

W�a
i j (v; u)1 k2

2p g
a

0

R(2)
i j (t; u) eivt dt= k2 S(2)

i j (v; u), (19)

where the constant k2 is given by

k2 =
1
T g

T

0

D2(t) dt. (20)

Thus, applying the general approach outlined in the previous section the parameter
vectors l and u can be estimated, for relatively large block lengths, by minimizing

J2 = s
i j

s
r

[V a
i j (vr ; l)− k2 Si j (vr ; u)]2, (21)

where V is an estimate of the expectation of V, obtained by block averaging.
Although the method is easier to implement when the block length is relatively large

it is noted that it can be applied for any block length.
As will be demonstrated later, through an example, the Fourier transform X (and hence

V) can, for specific equations of motion, be related directly to the Fourier transforms of
the measured displacement data, and its derivatives.

5. FOURTH ORDER SPECTRAL IDENTIFICATION METHOD

The Fourier transforms defined by equation (16) can be used as the basis of a fourth
order spectral estimation method (due to the symmetry assumptions with regard to the
excitation and response processes the corresponding third order spectra will be zero).

For this purpose the W quantities in equation (11) may be defined as follows

Wb
i jkl;r (v1, v2, v3 ; u)=

1
8p3T

Yi;r (v1 ; u)Yj;r (v2 ; u)Yk;r (v3 ; u)Y*l;r (v1 +v2 +v3 ; u), (22)

and the V quantity may be similarly defined. On taking expectations of this W quantity
one finds that

W�b
i jkl (v1, v2, v3)=

1
8p3T g

T

0 g
T

0 g
T

0 g
T

0

R(4)
i jkl (s, t, u, v; u)D(s)D(t)D(u)D(v)

× e−i[v1 s+v2 t+v3 u−(v1 +v2 +v3)v] ds dt du dv. (23)

It is shown in Appendix A that this W can be expressed as

W�b
i jkl (v1, v2, v3 ; u)= k4 Pi jkl (v1, v2, v3 ; u)+S(2)

i j (v1 ; u)S(2)
kl (v3 ; u)DT (v1 +v2)

+S(2)
ik (v3 ; u)S(2)

jl (v2 ; u)DT (v1 +v3)

+S(2)
il (v1 ; u)S(2)

jk (v2 ; u)DT (v2 +v3), (24)
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where k4 is defined by equation (A6) and the window DT (v) is defined by (from equations
(A17) and (A12))

DT (v)=
1

2pT bg
T

0

D2(t) e−ivt dtb
2

. (25)

In the special case of a ‘‘box car’’ window (D(t)=1), equation (25) gives

DT (v)=
1

2pT bg
T

0

e−ivt dtb
2

=
T
2p

sin2 (pV)
(pV)2 , (26)

where

V=vT/2p, (27)

and, according to equation (A6), k4 =1.
For other, common types of window k4 and DT (v) can be evaluated using equations

(A6) and (25). For example, for the Hanning window

D(t)= 1
2 $1−cos 02pt

T 1%, (28)

k4 =35/128=0·2734 and

DT (V)=
T

128p3 (X2 +Y2), (29)

where

X=g
2p

0

(1−cos u)2 cos (Vu) du Y=g
2p

0

(1−cos u)2 sin (Vu) du. (30)

Expressions for X and Y are given in Appendix B.
In the general case it can be deduced, from equation (25) that

g
a

−a

DT (v) dv= k4, (31)

independent of the value of T. In the limit, as T becomes very large, DT (v), becomes
concentrated at v=0 and, using equation (31), it follows that

DT (v):k4 d(v). (32)

Thus, equation (24) reduces to

W�b
i jkl (v1, v2, v3 ; u)= k4 Si jkl (v1, v2, v3 ; u). (33)

On applying the general approach outlined earlier, for relatively large block lengths, l

and u can be estimated by minimizing

JA
4 = s

i jkl

s
rsu

[V b
i jkl (vr , vs , vu ; l)−W�b

i jkl (vr , vs , vu ; u)]2, (34)
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where V is an estimate of the expectation of

Vb
i jkl;r (v1, v2, v3 ; l)=

1
8p3T

Xi;r (v1 ; l)Xj;r (v2 ; l)Xk;r (v3 ; l)X*l;r (v1 +v2 +v3 ; l) (35)

obtained by block averaging, and Si jkl (v1, v2, v3 ; u) is given by equation (9).
An alternative cost function can be obtained by replacing the spectral terms in

equation (24) by estimates derived from the data. This is equivalent to defining new V and
W as follows:

V c
i jkl;r (v1, v2, v3 ; l)=V b

i jkl;r (v1, v2, v3 ; l)

−
1
k2

2 & V a
i j (v1 ; l)V a

kl (v3 ; l)DT (v1 +v2)
+V a

ik (v3 ; l)V a
jl (v2 ; l)DT (v1 +v3)

+V a
il (v1 ; l)V a

jk (v2 ; l)DT (v2 +v3)', (36)

W�b
i jkl (v1, v2, v3 ; l)= k4 P4 (v1, v2, v3 ; l). (37)

The cost function then becomes

JB
4 = s

i jkl

s
rsu

[V c
i jkl (vr , vs , vu ; l)− k4 Pi jkl (vr , vs , vu ; u)]2. (38)

In the evaluation of either JA
4 or JB

4 , considerable reduction in computational effort may
be achieved by restricting the frequencies to the principal domain, defined by [19]

v1 ev2 ev3

g
G

G

G

G

F

f

v1 +v2 +v3 e 0

v1 +v2 +2v3 e 0
(39)

exactly only one frequency from v1, v2, v3 Q 0.

6. EXTENSION TO ASYMMETRIC EXCITATION AND RESPONSE

Although it was assumed in section 2 that all the excitation and response processes are
symmetric with respect to zero mean values, the approach outlined in section 3 is actually
applicable in the more general case where the means are non-zero and the excitation and
response processes are asymmetric. In particular, the system parameters can still be
estimated by minimizing the cost functions J2 and JA

4 , as defined by equations (21) and (34),
respectively. However, it will be necessary to introduce extra parameters in the vector of
excitation parameters, u.

As an example, if the means of the excitation processes are non-zero, then these
unknown quantities can be included in u. Then, using the second order spectral
identification method, the quantities V a

i j appearing in the cost function J2, defined by
equation (21), will contain spikes at zero frequency, corresponding to zero-frequency
spikes in the excitation. The spikes in V 
ai j will be finite, due to the use of finite block lengths
in their generation. A minimization of J2 will then lead to estimates of the excitation means.
Similarly, finite spikes related to the excitation means will occur in the quantities V 
bi jkl which
appear in the cost function JA

4 , defined by equation (34), again allowing an estimation of
these means through a minimization of this function.

In the more general case where further parameters are required to specify the degree
of asymmetry of the excitation, or there are system parameters relating to asymmetries in
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the systems dynamic characteristics, it is unlikely that satisfactory estimation will be
achievable using only second and fourth order spectra. In this case it will be advantageous
to also consider third order spectra (bispectra) and to minimize a cost function, J3, relating
to such spectra, defined by analogy with the definitions given earlier, relating to the second
and fourth order spectra. In this situation the required parameters could be estimated by
simultaneous minimizing J2, J3 and J4, through the introduction of an overall cost function,
as indicated by equation (15).

Clearly more computational effort will be required to deal with asymmetric excitations
and responses and, with the introduction of further parameters, the overall accuracy of
the estimation may decrease. We intend to investigate this issue in depth, in a future paper.

7. APPLICATION TO A NON-LINEAR OSCILLATOR

As an illustration a non-linear oscillator with the following equation of motion will be
considered:

ẍ+ a1 ẋ+ n1 ẋ =ẋ =+ a2 x+ n2 x3 = f (t; u). (40)

Such an equation is often used to model the dynamic behaviour of ships rolling in random
waves [4]. The linear-plus-quadratic form of damping adopted here has been shown to give
an excellent fit to experimental ship rolling data (e.g., see reference [1]). Also the linear-plus
cubic stiffness component in equation (40) gives a good representation of actual ship
restoring moment characteristics, for small to moderately large roll angles (Q35° say).
It is noted that equation (40) can be used to model a variety of other fluid–structure
systems.

Here the vector of unknown system parameters is

l=[l1, l2, l3, l4]= [a1, n1, a2, n2]T. (41)

The linear-in-the-parameter nature of the equation of motion greatly facilitates the
implementation of the methods discussed earlier. The implementation of the proposed
methods does not require the linearity of the equation of motion with respect to the
coefficients, provided that a general purpose minimization algorithm is used to minimize
the cost functions. Here a standard algorithm, available within the software package
MATLAB has been utilized [20].

It will be assumed here that f(t; u) can be modelled as a Gaussian white noise. Thus,

R(2)(t; u)=E{ f(t; u)f(t+ t; u)}=D2d(t), (42)

where D is the ‘‘strength’’ of the excitation. D2 =2pS0, where S0 is the constant second
order spectral level of the white noise process, that is

S(2)(v)=S0. (43)

Here there is only one parameter, D (or S0) relating the excitation and thus u is scalar:
i.e., u=D.

Due to the Gaussianity of the input process all the correlation–cumulant functions of
the input process of order higher than two, and all the related spectral quantities, are zero:
thus,

P(4)(v1, v2, v3 ; u)=0. (44)
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7.2.    

A second order spectral input–output relationship can be derived fairly readily from
equation (40) by following the procedure outlined earlier, in section 4.

Setting y0 = ẍ, y1 = ẋ, y2 = ẋ =ẋ =, y3 = x, y4 = x3 the first of equations (16) can be
expressed as (dropping the i subscript)

Xr (v; l)= s
4

j=0

lj Yj;r (v), (45)

where l0 =1 and Yj;r (v) are the finite length Fourier transforms of the corresponding y
quantities: thus,

Yj;r (v)=g
T

0

yj;r (t)D(t) e−ivt dt (46)

and the appropriate V quantity (see equations (17)) is

Va
r (v; l)=

1
2p

Xr (v; l)X*r (v; l)= s
4

j=0

s
4

k=0

lj lk Ujk;r (v), (47)

where

Ujk;r (v)=
1
2p

Yj (v)Y*k (v). (48)

The expectation of the appropriate W quantity is, from equation (19),

W�a
r = k2 S0 = k2 D2/2p. (49)

From equation (21) the unknown parameters can be estimated by minimizing the cost
function

J2 = s
r

[V a(vr ; l)− k2 S0]2, (50)

where V a is the block average estimate of the expectation of Va
r .

Some simplification is achieved by noting that, from equation (47)

V a(v; l)= s
4

j=0

s
4

k=0

lj lk U jk (v), (51)

and, if the block length is significantly greater than the correlation time scale of the
response

U�jk (v)= k2 Sjk (v), (52)

where Sjk (v) is the cross spectrum for yk (t) and yj (t) (direct spectrum if k= j). Now the
spectra relating to the velocity and acceleration responses, ẋ(t) and ẍ(t) can be expressed
in terms of the spectra relating to the displacement. If, for example, the spectra S00 (v)
relating to the acceleration response, ẍ, are considered then

S00 (v)=v4S33 (v), (53)
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and hence, to a good approximation, if the number of blocks is large,

U 00 (v)=v4U 33. (54)

This removes the necessity for calculating the acceleration from the data. Similar
arguments apply to the velocity but it is noted that this must, in any event, be calculated
to evaluate y2.

In the case where the data window is unity, expressions such as equation (52) can be
derived more directly from the relationships

Y0;r (v)=−v2Y3;r and Y1;r (v)=−ivY3;r . (55)

However, these relationships are invalid for more general types of window and the validity
of expressions such as those given in equation (53) then rests on the assumption that the
block length is relatively large.

Using the fact that, from equation (52) the Ujk (v) quantities are essential estimates of
corresponding cross-spectra, Sjk (v), the expression for V a can be written as

V a(v; l)=S
 (2)
X (v) [a2

2 +v4 −2a2 v2 +v2a2
1]+ n2

1S
 (2)
Y (v)+ n2

2S
 (2)
Z (v)

+2(a2 −v2) (n1 S
 (2)
XYr (v)+ n2 S
 (2)

XZr (v))+2n1n2S
 (2)
YZr (v)

+2va1 (n1 S
 (2)
XYi (v)+ n2 S
 (2)

XZi (v)). (56)

The additional subscripts, r and i, appearing in equation (56) denote, respectively, the real
and imaginary parts of the cross-spectrum.

The number, N, of discrete frequencies, vi , at which V a is evaluated must be greater than
the number of parameters to be estimated (here 5). The accuracy of the results obtained
is, generally, not sensitive to the precise choice of N and vi . However, the chosen
frequencies should concentrate around the dominant part of the response spectrum to
ensure the most significant harmonic component of the response.

7.2.    

As will be demonstrated later through a presentation of numerical results obtained from
simulated data, a significant improvement in estimation accuracy, over that obtainable
using second order spectra, can be achieved by employing fourth order spectral quantities.

Using equations (35), (45) and (46) again the appropriate V quantity is

Vb
r (v1, v2, v3 ; l)=

1
8p3T

s
4

j=0

s
4

k=0

s
4

l=0

s
4

m=0

lj lk ll lm Ujklm;r (v1, v2, v3), (57)

where

Ujklm;r (v1, v2, v3)=
1

8p3T
Yj (v1)Yk (v2)Yl (v3)Y*m (v1 +v2 +v3). (58)

The expectation of the appropriate W quantity is, from equation (24)

W�b(v1, v2, v3 ; u)=S2
0[DT (v1 +v2)+DT (v1 +v3)+DT (v2 +v3)]. (59)

Thus, again, u is here scalar and can be equated to D. The unknown parameters can now
be evaluated by minimizing the cost function JA

4 , where here V b is given by equations (57)
and (58) and W�b is given by equation (59).
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As in the case of the estimation method based on second order spectra it is possible to
avoid numerically differentiating the response displacement to obtain the acceleration
response. For example

S0000 (v1, v2, v3)=v2
1v

2
2v

2
3v̄

2S3333 (v1, v2, v3), (60)

where v̄=v1 +v2 +v3. Hence, to a good approximation,

U 0000 (v1, v2, v3)=v2
1v

2
2v

2
3v̄

2U 3333 (v1, v2, v3). (61)

An alternative approach to estimation is to minimize the cost function defined by
equation (37). Here, since the excitation is Gaussian, this reduces to

JB
4 = s

rsu

[V c(vr , vs , vu ; l)]2, (62)

where

V c (vr , vs , vu ; l)=V b (vr , vs , vu ; l)−
1
k2

2 & V a(vr ; l)V a(vu ; l)DT (vr +vs )
+V a(vu ; l)V a(vs ; l)DT (vr +vu )
+V a(vr ; l)V a(vs ; l)DT (vs +vu )'. (63)

This has the advantage that the parameter vector l can be estimated independently of the
excitation parameter (here D).

7.3.     

Previous work [12] has shown that a simple moments method can yield good estimates
of the stiffness parameters, for a single-degree-of-freedom system such as that governed
by equation (40). Full details of this method are given in reference [12] and therefore are
not included here. However, some stiffness parameter estimates obtained by the moment
method are presented here, for comparison with corresponding estimates obtained by the
spectral methods.

7.4.   

To test the proposed approach, sample function of X(t) were generated by numerically
integrating equation (40), using a fourth order Runge–Kutta algorithm. Samples of the
external Gaussian white noise were generated by using a method described by Roberts and

Figure 1. Estimates of a2 for various levels of excitation. ————, true value: r, second order: W, fourth order:
R, moment method.
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Figure 2. Estimates of n2 for various levels of excitation. ————, true value: r, second order: W, fourth order:
R, moment method.

Spanos [21] and response time histories of duration 2000 s were computed, with a time step
of 0·02 s. The system parameters chosen for the simulation study were a1 =0·5, n1 =0·5,
a2 =25, n2 =5.

In applying the spectral estimation techniques each response history was processed in
blocks of length 20·48 s. Some initial pilot studies revealed that the accuracy of the results
was, generally, not sensitive to the precise choice of the number of discrete frequencies used
to evaluate the cost function provided that this number is significantly in excess of the
number of parameters to be estimated (here 5). Clearly, however, the chosen frequencies

Figure 3. Comparison between estimated restoring force characteristics and the true characteristic; S0 =2500.
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should concentrate around the dominant part of the spectrum of x(t), in the case of the
second order method, or the trispectrum of x(t) in the case of fourth order estimation,
to ensure that the most significant harmonic components of the response are included.
A numerical evaluation of the trispectrum for the oscillator under examination showed
that the range of frequency used for the minimization of J2 is also appropriate for
the minimization of J4, the latter being confined to the principal domain defined by
equation (39).

In order to reduce the computational effort involved in implementing the fourth order
spectral method the number of frequencies included in the minimization procedure—i.e.,
the volume for the frequency points (vr , vs , vu )—may be selected as the intersection
between the principal domain and the region defined by

=v1 +v2 =EDv, =v1 +v3 =EDv, =v2 +v3 =EDv, (64)

where Dv=2p/T. Trial studies showed that this considerably reduced the computational
effort without a significant loss of accuracy in the identification procedure.

Figures 1 and 2 show estimates of the linear and non-linear stiffness parameters for
various levels of excitation, as measured by S0. Here estimates obtained by the moment
method are compared with those found by applying the second order and fourth order
spectral methods. In both cases all the unknown parameters were simultaneously
estimated. Generally the estimation is reasonably accurate, especially with regard to the
linear term. It is evident that the moment method estimates are more accurate. The low
accuracy of the estimate of n2, at low excitation levels, simply reflects the fact that under
these conditions the contribution of the non-linear stiffness is negligible.

To obtain the spectral estimates shown in Figures 1 and 2 the upper limit of the
frequency range used in the cost functions was 8 rad/s. Trials showed that improved

Figure 4. Estimates of a1eq for various levels of excitation: ——, true value; r, estimated value.
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accuracy, especially with respect to the non-linear stiffness coefficient was obtained by
increasing this upper limit, at the expense of a significant increase in computational effort.
However, a precise determination of these coefficients may not, in practice, be of
paramount importance, so long as the overall restoring force is reasonably well estimated.
In fact, a study of Figures 1 and 2 reveals evidence of a trade-off between the estimated
values of a2 and n2 : when a2 is low n2 is high, and vice-versa. This suggests that the estimate
of the restoring force, fR = a2 x+ n2 x3, is fairly accurate. Figure 3 confirms that this is the
case. Here the true restoring force, derived using the true parameters, is compared with
the estimated restoring force, derived using the stiffness parameters estimated by spectral
methods, for one value of S0. Here the displacement range is the maximum obtained in
the simulated responses. Good agreement is obtained: the fourth order spectral estimate
being more accurate, as one would expect. Figure 3 also shows the degree of improvement
in the accuracy of the estimation when the upper limit of the frequency range used is
increased from 8 to 12 rad/s.

Previous work has shown that the second order spectral method is not capable of
distinguishing between linear and non-linear damping contributions to the response [13].
However, it is able to give reasonable estimates of an equivalent linear damping [13]. These
are obtained by replacing the non-linear damping force, fD = a1 ẋ+ n1 ẋ =ẋ =, by the linear
force fD = a1eq ẋ, in the equation of motion, as far as the estimation procedure is concerned.
Figure 4 shows a comparison between the estimated equivalent linear damping, as obtained
by the second order spectral method, and the theoretical value, given by [21]

a1eq = a1 + n1 08p1sẋ , (65)

Figure 5. Comparison of estimated values of the excitation level with the true values: ——, true value; r,
estimated value.
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where sẋ is the standard deviation of ẋ. The upper frequency limit chosen for the
cost function here, and for generating the further results to be discussed, was 8 rad/s.
Here various equivalent linear damping estimates are plotted against the excitation level,
S0. The agreement is good, especially in view of the fact that the two definitions of
equivalent linear damping involved here have a different origin.

The estimated values of the input spectral level, S0, obtained by the second order spectral
method, are plotted against the corresponding true values in Figure 5. Again a reasonably
good level of agreement is obtained.

In Figure 6 estimates of the damping coefficients are shown: specifically, a1 estimates are
plotted against corresponding estimates of n1. These estimates are derived from a number
of simulation results, each for a spectral input level S0 of 100, by using both the second
order and fourth order spectral estimation methods. The second order estimates show a
significant trade off, and are localized around a line corresponding approximately to
equation (65), with a fixed value of equivalent linear damping. They are therefore of low
accuracy, generally speaking. In contrast the fourth order estimation points lie in a small
area very close to the target point, corresponding to the true parameter values, reflecting
their high degree of accuracy. Here J4 was minimized along the line corresponding to
equation (65).

These results relate to properties of the second and fourth order cost functions. Figures 7
and 8 show contour maps for these two functions, respectively, for S0 =100. Here the cost
function is regarded as a function of the two damping parameters, the other parameter
values being fixed at their true values. The minimum of the second order spectral functional
is localized along a valley, again corresponding approximatley to equation (65) with a fixed
level of equivalent linear damping. On the other hand the fourth order cost function
exhibits two minima localized symmetrically with respect to the origin of the damping
parameters plane, one around the target point and the other about its reflection. Thus

Figure 6. Variation of n1 estimates with estimates of a1: ×, true value; r, second order; Q, fourth order.
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minimization of the fourth order cost function may give estimates close to either minimum.
However, using the constraint that the equivalent linear damping is positive, and given
by equation (65), the fourth order spectral estimation method may be employed without
any ambiguity regarding the sign of the estimated parameters.

In the present investigation, based on simulated data, the effect of measurement noise
has not been considered. However, it can be expected that the proposed methods will be
robust with respect to such noise, provided that it is in a frequency range which is well
separated from the range within which the dynamic response is dominant. In these
circumstances the noise will be filtered out, through the exclusion of high frequency
components in the cost functions. This conclusion is supported by some recent simulation
studies using the second order spectral method for multi-degree-of-freedom systems.
There noise of various levels was simulated [22] and it was found that, for noise to signal
ratios below about 4%, its effect was negligible. Further support has been obtained from
applying the second order method to some real data obtained from a model ship in a wave
tank, rolling due to incident random waves. Here the measurement noise was at a low level,
typical of that found in experimental work, and good results were obtained [9].

8. CONCLUSIONS

A higher order spectra identification technique for estimating system and excitation
process parameters from measurements of the response alone has been presented, within
a general framework. Application to simulated data has shown that the proposed

Figure 7. Contour map of the cost function used in the second order spectral estimation method.
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Figure 8. Contour map of the cost function used in the fourth order spectral estimation method.

technique permits the estimation of the unknown parameters with high accuracy. More
specifically, a comparison between results obtained using both second and fourth order
spectral estimation methods has shown that the use of higher order spectra has the
significant advantage that it enables the separate contributions from the linear and
non-linear damping components to be accurately determined. It has been demonstrated
that the computational effort involved in the minimization of the appropriate cost
functions can be significantly reduced by confining the calculation to a reduced region
within the principal domain of the fourth order spectra.
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APPENDIX A

Using equation (5), the expression for W given by equation (24) can be rewritten as

W(4)
i jkl (v1, v2, v3 ; u)= a(v1, v2, v3 ; u)+ bi j (v1, v2 ; u)gkl (v1, v2, v3 ; u)

+bik (v1, v3 ; u)gjl (v1, v3, v2 ; u)

+bil (v2, v3 ; u)gjk (v3, v2, v1 ; u). (A1)

a=
1

8p3T g
T

0 g
T

0 g
T

0 g
T

0

K(4)
i jkl (s, t, u, v; u)D(s)D(t)D(u)D(v)

× e−i[v1 s+v2 t+v3 u−(v1 +v2 +v3)v] ds dt du dv, (A2)
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bmn (v1, v2 ; u)=
1

z8p3T g
T

0 g
T

0

R(2)
mn (t− s; u)D(t)D(s) e−[v1 s+v2 t] ds dt, (A3)

gmn (v1, v2, v3 ; u)=
1

z8p3T g
T

0 g
T

0

R(2)
mn (t− s; u)D(t)D(s) e−[v3 s−(v1 +v2 +v3)t] ds dt. (A4)

The evaluation of the a term may be considerably simplified if the correlation time scale
of the excitation is much smaller than the block length, T. Then, using the symmetry of
the correlation–cumulant function, K(4)

i jkl , one finds that (using a relationship similar to
equation (9))

a(v1, v2, v3)1
k4

8p3 g
a

−a g
a

−a g
a

−a

K(4)
i jkl (t1, t2, t3 ; u) e−i(v1 t1 +v2 t2 +v3 t3) dt1 dt2 dt3

= k4 P(4)
i jkl (v1, v2, v3 ; u), (A5)

where

k4 =
1
T g

T

0

D4(t) dt. (A6)

Turning to the evaluation of the b terms, on transforming variables to

h= t− s, m=
t+ s

2
, (A7)

equation (A3) may be rewritten as

bmn (v1, v2 ; u)=
1

z8p3T ggR

R(2)
mn (h; u)D0m−

h

21D0m+
h

21
×e−iv1 (m− h/2)− iv2 (m+ h/2) dh dm, (A8)

where the integration range, R, corresponds to that in equation (A3).
Again, if the excitation correlation time scale is small compared with the block length

then a significant simplification is possible. Thus, over the range that R(2)
mn is significantly

non-zero one has

D0m−
h

211D(m), D0m+
h

211D(m), (A9)

and hence

bmn (v1, v2 ; u)1 1
2p g

T

−T

R(2)
mn (h; u) ei((v1 −v2)h/2) dh×

1
z2pT g

T

0

D2(m) e−i(v1 +v2)m dm. (A10)

Also

1
2p g

T

−T

R(2)
mn (h; u) ei((v1 −v2)h/2) dh1 1

2p g
a

−a

R(2)
mn (h; u) ei((v1 −v2)h/2) dh=S(2)

mn0v1 −v2

2 1. (A11)
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If CT (v) is defined as

CT (v)=
1

z2pT g
T

0

D2(t) e−ivt dt, (A12)

then, from equations (A9)–(A11) one has

bmn (v1, v2 ; u)=S(2)
mn0v1 −v2

2 1CT (v1 +v2). (A13)

Now, for large T compared with tcor CT (v1 +v2) will peak sharply at v1 1−v2 and the
spectrum will be almost constant in the vicinity of this peak. Thus, one can approximate
further, for the spectral term in equation (A12), by setting v1 =−v2. This gives

bmn (v1, v2 ; u)=S(2)
mn (v1)CT (v1 +v2). (A14)

A similar analysis can be applied to approximate the gmn (v1, v2, v3 ; u) terms, defined by
equation (4). The result is as follows:

gmn (v1, v2, v3 ; u)=S(2)
mn (v3)C*T (v1 +v2). (A15)

It follows that

bmn (v1, v2 ; u)guv (v1, v2, v3 ; u)=S(2)
mn (v1)S(2)

uv (v3)DT (v1 +v2), (A16)

where

DT (v)=CT (v)C*(v). (A17)

On combining equations (A1) and (A15) the following final result is obtained:

W(4)
i jkl (v1, v2, v3 ; u)= k4 P(4)(v1, v2, v3 ; u)+S(2)

i j (v1 ; u)S(2)
kl (v3 ; u)DT (v1 +v2)

+S(2)
ik (v3 ; u)S(2)

jl (v2 ; u)DT (v1 +v3)

+S(2)
il (v1 ; u)S(2)

jk (v2 ; u)DT (v2 +v3). (A18)

APPENDIX B

X= 3
2 s1 − s2 − s3 + 1

4 (s4 + s5) Y= 3
2 c1 − c2 − c3 + 1

4 (c4 + c5), (B1)

where

s1 =
sin (2pV)

V
, s2 =

sin [2p(V+1)]
V+1

, s3 =
sin [2p(V−1)]

V−1
,

s4 =
sin [2p(V+2)]

V+2
, s5 =

sin [2p(V−2)]
V−2

, (B2)

and

c1 =
1−cos (2pV)

V
, c2 =

1−cos [2p(V+1)]
V+1

, c3 =
1−cos [2p(V−1)]

V−1
,

c4 =
1−cos [2p(V+2)]

V+2
, c5 =

1−cos [2p(V−2)]
V−2

. (B3)


